Transformer Core Construction Details

Transformer Core:

Generally, transformers are consisting of copper winding such as primary winding, secondary winding and auxiliary winding or tertiary winding, electrical insulation, core, bushings, insulation, terminal box etc. Transformers are working under the principle of mutual induction. Mutual inductance is nothing but a flux linkage between two winding. The magnetic flux is going through a structure which is called Transformer core. Transformer cores are the main path of the magnetic circuit. Simply as compared to electrical circuit, we can say it as conductor. How conductor carry the current in electrical circuit as well as in magnetic circuit, transformer cores carries the magnetic flux. Transformer core has less reluctance. Reluctance which opposes the flow of magnetic flux. So That transformer core should have less reluctance. High value of reluctance increases the transformer core temperature.


Transformer Core
Transformer Core

Consider ration of Selection of transformer core:

  • Transformer core should have less reluctance to the magnetic flux. The The flux is indirectly proportional to the reluctance.
  • The transformers core should be laminated in order reduce the eddy current losses. The eddy current loss is proportional the square of thickness of laminations. The thickness of the lamination is made around 0.3mm to 0.5 mm reducing thickness of the lamination below 0.3 mm leads to less mechanical strength.
  • Higher content silicon steel is a soft iron material having less hysteresis loss. Also the permeability of the silicon steel is high, therefore that material takes small amount of magnetizing current. The steel used for transformer cores may be hot rolled or cold rolled. The hot rolled steel allows the maximum flux density of 1.45 Wb/m^2 and cold rolled steel permits the maximum flux density of 1.8 Wb/m^2 at 0.33 mm (or 0.35 mm) thickness. At that same time, the cost of cold rolled steel is higher than the hot rolled steel. But cold rolled steel have many advantages that hot rolled steel iron..let see..
  • Cold Rolled Grain Oriented (CRGO) steel sheet with an approximate silicon content of 3% is typically used for magnetic circuits of transformer
    1. Magnetic induction is maximum and the loop of BH curve is large.
    2. Core loss during no load operation of the transformer is low.
    3. Reactive power input at no load operation of the transformer is low.
    4. Good mechanical strength
    5. Less magntrotriction

Transformer Core lamination:

Transformer stamping are connected and should be closed to flow magnetic flux. So that four type of construction are made.

Transformer Core
Transformer Core : Reference: www.electronics-tutorials.ws
  • E-I lamination
  • E-E lamination
  • U-I lamination
  • L-L lamination

Here the English letter mentions about the shape of the lamination. E-I and E-E construction is used in shell type transformer. U-I and L-L construction is used in Core type of transformer. E-I core laminated transformer construction is mostly used in isolation transformers, step-up and step-down transformers as well as auto transformers.

Note: Individual laminations should be tightly bolted during the transformer core construction. Allowing the air gap between the lamination leads to increases the reluctance of the magnetic circuit. Also For reducing the transformer noises, the lamination should be tightly clamped together and punch holes should be avoided as far as possible to minimize cross flux iron losses. The air gap at the joint of limbs and yokes should be reduced as much as possible for allowing maximum smooth conducting paths for magnetizing current.

Transformer core Loss:

Transformer core losses is called as constant losses which includes both eddy current losses and hysteresis losses. Both losses occur due to the reluctance of the core, because of we cannot construct a core with zero reluctance. (just like voltage drop in electrical circuit. The voltage drop occurs in the cable due to the cable resistance)

Eddy current losses:

Eddy current losses is a constant loss due to the flow of circulating currents other than the core area. All the flux produced in the primary winding cannot reach the secondary winding, the flux is cut by the core neighboring parts. Due to this action, there is a small amount of circulating current forms. Due to this current cause the loss. This loss is called eddy current losses. Eddy current losses within a transformer core cannot be eliminated completely, but they can be greatly reduced and controlled by reducing the thickness of the steel core.

Hysteresis losses:

Each material has its own molecules structure. Transformer Hysteresis Losses occurs due to the friction of molecules against the flow of the magnetic lines of force required to magnetize the core, which are constantly changing in value and direction first in one direction and then the other due to the influence of the

sinusoidal supply voltage (Alternating current).

 

LEAVE A REPLY

Please enter your comment!
Please enter your name here